On Classes of Meromorphic Locally Univalent Functions Defined by Differential Inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of Meromorphic Functions Defined by the Hadamard Product

J. Dziok Institute of Mathematics, University of Rzeszów, ul. Rejtana 16A, 35-310 Rzeszów, Poland Correspondence should be addressed to J. Dziok, [email protected] Received 2 July 2009; Revised 21 November 2009; Accepted 5 January 2010 Academic Editor: Vladimir Mityushev Copyright q 2010 J. Dziok. This is an open access article distributed under the Creative Commons Attribution License, wh...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Coefficient Inequalities for Certain Classes of Analytic and Univalent Functions

For functions f(z) which are starlike of order α, convex of order α, and λ-spirallike of order α in the open unit disk U, some interesting sufficient conditions involving coefficient inequalities for f(z) are discussed. Several (known or new) special cases and consequences of these coefficient inequalities are also considered.

متن کامل

Region of Variability for Certain Classes of Univalent Functions Satisfying Differential Inequalities

Abstract. For complex numbers α, β and M ∈ R with 0 < M ≤ |α| and |β| ≤ 1, let B(α, β,M) be the class of analytic and univalent functions f in the unit disk D with f(0) = 0, f (0) = α and f (0) = Mβ satisfying |zf (z)| ≤ M , z ∈ D. Let P(α,M) be the another class of analytic and univalent functions in D with f(0) = 0, f (0) = α satisfying Re (zf (z)) > −M , z ∈ D, where α ∈ C \ {0}, 0 < M ≤ 1/ ...

متن کامل

Multiplier Family of Univalent Harmonic Meromorphic Functions

The aim of this article is to study a multiplier family of univalent harmonic meromorphic functions using the sequences {cn} and {dn} of positive real numbers. By specializing {cn} and {dn}, representation theorms, bounds, convolution, geometric convolution, integral convolution and convex combinations for such functions have been determined. The theorems presented, in many cases, confirm or ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Iranian Mathematical Society

سال: 2019

ISSN: 1017-060X,1735-8515

DOI: 10.1007/s41980-019-00247-x